Code: EC3T1

II B.Tech - I Semester - Regular/Supplementary Examinations November - 2019

ENGINEERING MATHEMATICS - III
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) To solve the equation $x^{3}+x^{2}-1=0$ by Iteration method, the iterative function $\emptyset(x)$ is ?
b) Prove that $\quad E=1+\Delta$.
c) Write the Fourth order Runge-Kutta method Formulae to solve the First Order Differential equation.
d) Apply Picard's method to find y_{1} of $y^{\prime}=x y+1$ with $y(0)=1$
e) Verify the Analyticity of $f(z)=z^{2}$.
f) Find b such that $u=e^{b x} \cos 3 y$ is harmonic.
g) Find the value of $\int_{0}^{1+i} z^{2} d z$ along the line $x=y$.
h) State the Taylor's series of $f(z)$ about the point $z=a$.
i) Find the singularities of $\frac{z^{2}+1}{1-z^{2}}$.
j) Find the residue of $\frac{1}{(z+1)(z+3)}$ at $z=-1$.
k) Find the Invariant points of the Transformation $w=\frac{6 z-9}{z}$.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Find a real root of $x \log _{10} x-1.2=0$ using NewtonRaphson's method.
b) Find y (32) using Gauss Forward Differences formula for the following data 8 M

x	25	30	35	40
y	0.2707	0.3027	0.3386	0.3794

3. a) Solve for y at $\mathrm{x}=0.1,0.2$ given that $y^{\prime}=x^{2}-y, y(0)=1$ by R-K method of $4^{\text {th }}$-order.
b) Apply Milne's Predictor Corrector Method to find y (0.4) from the equation $\frac{d y}{d x}=x y+y^{2}, y(0)=1$ by obtaining the starting value by Euler's method.
4. a) Prove that z^{n} (n is a positive integer) is Analytic and hence find its derivative.
b) Find the Analytic function whose Imaginary part is $e^{-x}(x \cos y+y \sin y)$.
5. a) Evaluate $\int_{c} \frac{e^{z}}{(z-1)(z-4)} d z \quad$ where $C:|Z|=2$.

8 M
b) Obtain the Laurent series expansion of $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in powers of z where
(i) $|z|<1$
(ii) $1<|z|<2$
(iii) $|z|>2$
6. a) Using the method of Contour Integration Evaluate
$\int_{0}^{2 \pi} \frac{\sin 3 \theta}{5-3 \cos \theta} d \theta$
b) Find the Bilinear transformation that maps the points $(0,1, \infty)$ in z -plane onto the points $(-1,-2,-\mathrm{i})$ in the w-plane. 8 M

