Code: EC3T1

II B.Tech - I Semester – Regular/Supplementary Examinations November - 2019

ENGINEERING MATHEMATICS - III (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) To solve the equation $x^3+x^2-1=0$ by Iteration method, the iterative function $\emptyset(x)$ is ?
- b) Prove that $E = 1 + \Delta$.
- c) Write the Fourth order Runge-Kutta method Formulae to solve the First Order Differential equation.
- d) Apply Picard's method to find y_1 of y' = xy + 1 with y(0) = 1
- e) Verify the Analyticity of $f(z) = z^2$.
- f) Find b such that $u = e^{bx} \cos 3y$ is harmonic.
- g) Find the value of $\int_{0}^{z^{2}dz}$ along the line x = y.
- h) State the Taylor's series of f(z) about the point z = a.
- i) Find the singularities of $\frac{z^2 + 1}{1 z^2}$

- j) Find the residue of $\frac{1}{(z+1)(z+3)}$ at z=-1.
- k) Find the Invariant points of the Transformation $w = \frac{6z-9}{z}$.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) Find a real root of $x \log_{10} x 1.2 = 0$ using Newton-Raphson's method. 8 M
 - b) Find y (32) using Gauss Forward Differences formula for the following data 8 M

X	25	30	35	40
У	0.2707	0.3027	0.3386	0.3794

- 3. a) Solve for y at x = 0.1, 0.2 given that $y' = x^2 y$, y(0) = 1 by R-K method of 4^{th} -order.
 - b) Apply Milne's Predictor Corrector Method to find y (0.4) from the equation $\frac{dy}{dx} = xy + y^2$, y(0) = 1 by obtaining the starting value by Euler's method.
- 4. a) Prove that zⁿ (n is a positive integer) is Analytic and hence find its derivative. 8 M

b) Find the Analytic function whose Imaginary part is

$$e^{-x}(x\cos y + y\sin y)$$
.

- 5. a) Evaluate $\int_{c}^{c} \frac{e^{z}}{(z-1)(z-4)} dz$ where C: $|\mathbf{Z}| = 2$.
 - b) Obtain the Laurent series expansion of $f(z) = \frac{z+3}{z(z^2-z-2)}$ in powers of z where 8 M

(i)
$$|z| < 1$$
 (ii) $1 < |z| < 2$ (iii) $|z| > 2$

6. a) Using the method of Contour Integration Evaluate

$$\int_{0}^{2\pi} \frac{\sin 3\theta}{5 - 3\cos \theta} d\theta$$
8 M

b) Find the Bilinear transformation that maps the points $(0,1,\infty)$ in z-plane onto the points (-1,-2,-i) in the w-plane. 8 M